Products

SIGN UPLOG IN

Models / Violence Detection

Violence Detection BETA

Violence classes

The Violence model returns an overall probability in violence.prob. This probability is defined as the maximum of all the underlying classes listed below. For more fine-grained decisions, you can use the following classes:

  • Physical violence: Photos and illustrations displaying physical violence. Specifically:
    violence.classes.physical_violence
    • Hanging: person being hanged or corpses hanging from a rope
    • Strangling: person being strangled or choked by someone or something (hands, a rope, a piece of clothing or an object)
    • Restraining: person being tied up, gagged or tied in a violent way. This does not include displays of people handcuffed or restrained in potentially legal ways (by law enforcement or in prison).
    • Fights: two or more individuals engaging in a physical fight, punching each other, kicking each other, fists raised to punch each other or otherwise physically attacking each other. This does not include people fighting as part of combat sports such as boxing, judo, wrestling etc.
    • Person on fire: live person burning or engulfed in flames
  • Firearm threat: Firearms being used to aim at a human
    violence.classes.firearm_threat
    • Firearms aiming at someone who is clearly visible in the image
    • Firearms aiming at the camera (at the viewer of the image)
    • Views through a gunsight aimed at a human target
  • Combat sport: Fights occurring in combat sports
    violence.classes.combat_sport
    • People boxing, kickboxing, wrestling...
    • People engaging in martial arts: judo, karate, sumo, jujitsu...
    • Fencing

Related models

The following 3 models can provide a useful complement to the violence model:

Use the model (images)

If you haven't already, create an account to get your own API keys.

Detect violence

Let's say you want to moderate the following image:

You can either share a URL to the image, or upload the raw binary image.

Option 1: Send image URL

Here's how to proceed if you choose to share the image URL:


curl -X GET -G 'https://api.sightengine.com/1.0/check.json' \
    -d 'models=violence' \
    -d 'api_user={api_user}&api_secret={api_secret}' \
    --data-urlencode 'url=https://sightengine.com/assets/img/examples/example-fight-combat.jpg'


# this example uses requests
import requests
import json

params = {
  'url': 'https://sightengine.com/assets/img/examples/example-fight-combat.jpg',
  'models': 'violence',
  'api_user': '{api_user}',
  'api_secret': '{api_secret}'
}
r = requests.get('https://api.sightengine.com/1.0/check.json', params=params)

output = json.loads(r.text)


$params = array(
  'url' =>  'https://sightengine.com/assets/img/examples/example-fight-combat.jpg',
  'models' => 'violence',
  'api_user' => '{api_user}',
  'api_secret' => '{api_secret}',
);

// this example uses cURL
$ch = curl_init('https://api.sightengine.com/1.0/check.json?'.http_build_query($params));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
curl_close($ch);

$output = json_decode($response, true);


// this example uses axios
const axios = require('axios');

axios.get('https://api.sightengine.com/1.0/check.json', {
  params: {
    'url': 'https://sightengine.com/assets/img/examples/example-fight-combat.jpg',
    'models': 'violence',
    'api_user': '{api_user}',
    'api_secret': '{api_secret}',
  }
})
.then(function (response) {
  // on success: handle response
  console.log(response.data);
})
.catch(function (error) {
  // handle error
  if (error.response) console.log(error.response.data);
  else console.log(error.message);
});

See request parameter description

ParameterTypeDescription
mediabinaryimage to analyze
modelsstringcomma-separated list of models to apply
api_userstringyour API user id
api_secretstringyour API secret

Option 2: Send raw image

Here's how to proceed if you choose to upload the raw image:


curl -X POST 'https://api.sightengine.com/1.0/check.json' \
    -F 'media=@/path/to/image.jpg' \
    -F 'models=violence' \
    -F 'api_user={api_user}' \
    -F 'api_secret={api_secret}'


# this example uses requests
import requests
import json

params = {
  'models': 'violence',
  'api_user': '{api_user}',
  'api_secret': '{api_secret}'
}
files = {'media': open('/path/to/image.jpg', 'rb')}
r = requests.post('https://api.sightengine.com/1.0/check.json', files=files, data=params)

output = json.loads(r.text)


$params = array(
  'media' => new CurlFile('/path/to/image.jpg'),
  'models' => 'violence',
  'api_user' => '{api_user}',
  'api_secret' => '{api_secret}',
);

// this example uses cURL
$ch = curl_init('https://api.sightengine.com/1.0/check.json');
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $params);
$response = curl_exec($ch);
curl_close($ch);

$output = json_decode($response, true);


// this example uses axios and form-data
const axios = require('axios');
const FormData = require('form-data');
const fs = require('fs');

data = new FormData();
data.append('media', fs.createReadStream('/path/to/image.jpg'));
data.append('models', 'violence');
data.append('api_user', '{api_user}');
data.append('api_secret', '{api_secret}');

axios({
  method: 'post',
  url:'https://api.sightengine.com/1.0/check.json',
  data: data,
  headers: data.getHeaders()
})
.then(function (response) {
  // on success: handle response
  console.log(response.data);
})
.catch(function (error) {
  // handle error
  if (error.response) console.log(error.response.data);
  else console.log(error.message);
});

See request parameter description

ParameterTypeDescription
mediabinaryimage to analyze
modelsstringcomma-separated list of models to apply
api_userstringyour API user id
api_secretstringyour API secret

API response

The API will then return a JSON response with the following structure:

                  
                  
{
    "status": "success",
    "request": {
        "id": "req_gcTp4s63IAAni0lFOT7KK",
        "timestamp": 1714997478.552115,
        "operations": 1
    },
    "violence": {
        "prob": 0.95,
        "classes": {
            "physical_violence": 0.03,
            "firearm_threat": 0.01,
            "combat_sport": 0.95
        }
    },
    "media": {
        "id": "med_gcTpqyOZ18IMsiMe4Ar28",
        "uri": "https://sightengine.com/assets/img/examples/example-fight-combat.jpg"
    }
}


              

Use model (Videos)

Detecting Violence in videos

Option 1: Short video

Here's how to proceed to analyze a short video (less than 1 minute):


curl -X POST 'https://api.sightengine.com/1.0/video/check-sync.json' \
  -F 'media=@/path/to/video.mp4' \
  -F 'models=violence' \
  -F 'api_user={api_user}' \
  -F 'api_secret={api_secret}'


# this example uses requests
import requests
import json

params = {
  # specify the models you want to apply
  'models': 'violence',
  'api_user': '{api_user}',
  'api_secret': '{api_secret}'
}
files = {'media': open('/path/to/video.mp4', 'rb')}
r = requests.post('https://api.sightengine.com/1.0/video/check-sync.json', files=files, data=params)

output = json.loads(r.text)


$params = array(
  'media' => new CurlFile('/path/to/video.mp4'),
  // specify the models you want to apply
  'models' => 'violence',
  'api_user' => '{api_user}',
  'api_secret' => '{api_secret}',
);

// this example uses cURL
$ch = curl_init('https://api.sightengine.com/1.0/video/check-sync.json');
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $params);
$response = curl_exec($ch);
curl_close($ch);

$output = json_decode($response, true);


// this example uses axios and form-data
const axios = require('axios');
const FormData = require('form-data');
const fs = require('fs');

data = new FormData();
data.append('media', fs.createReadStream('/path/to/video.mp4'));
// specify the models you want to apply
data.append('models', 'violence');
data.append('api_user', '{api_user}');
data.append('api_secret', '{api_secret}');

axios({
  method: 'post',
  url:'https://api.sightengine.com/1.0/video/check-sync.json',
  data: data,
  headers: data.getHeaders()
})
.then(function (response) {
  // on success: handle response
  console.log(response.data);
})
.catch(function (error) {
  // handle error
  if (error.response) console.log(error.response.data);
  else console.log(error.message);
});

See request parameter description

ParameterTypeDescription
mediabinaryimage to analyze
modelsstringcomma-separated list of models to apply
intervalfloatframe interval in seconds, out of 0.5, 1, 2, 3, 4, 5 (optional)
api_userstringyour API user id
api_secretstringyour API secret

Option 2: Long video

Here's how to proceed to analyze a long video. Note that if the video file is very large, you might first need to upload it through the Upload API.


curl -X POST 'https://api.sightengine.com/1.0/video/check.json' \
  -F 'media=@/path/to/video.mp4' \
  -F 'models=violence' \
  -F 'callback_url=https://yourcallback/path' \
  -F 'api_user={api_user}' \
  -F 'api_secret={api_secret}'


# this example uses requests
import requests
import json

params = {
  # specify the models you want to apply
  'models': 'violence',
  # specify where you want to receive result callbacks
  'callback_url': 'https://yourcallback/path',
  'api_user': '{api_user}',
  'api_secret': '{api_secret}'
}
files = {'media': open('/path/to/video.mp4', 'rb')}
r = requests.post('https://api.sightengine.com/1.0/video/check.json', files=files, data=params)

output = json.loads(r.text)


$params = array(
  'media' => new CurlFile('/path/to/video.mp4'),
  // specify the models you want to apply
  'models' => 'violence',
  // specify where you want to receive result callbacks
  'callback_url' => 'https://yourcallback/path',
  'api_user' => '{api_user}',
  'api_secret' => '{api_secret}',
);

// this example uses cURL
$ch = curl_init('https://api.sightengine.com/1.0/video/check.json');
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $params);
$response = curl_exec($ch);
curl_close($ch);

$output = json_decode($response, true);


// this example uses axios and form-data
const axios = require('axios');
const FormData = require('form-data');
const fs = require('fs');

data = new FormData();
data.append('media', fs.createReadStream('/path/to/video.mp4'));
// specify the models you want to apply
data.append('models', 'violence');
// specify where you want to receive result callbacks
data.append('callback_url', 'https://yourcallback/path');
data.append('api_user', '{api_user}');
data.append('api_secret', '{api_secret}');

axios({
  method: 'post',
  url:'https://api.sightengine.com/1.0/video/check.json',
  data: data,
  headers: data.getHeaders()
})
.then(function (response) {
  // on success: handle response
  console.log(response.data);
})
.catch(function (error) {
  // handle error
  if (error.response) console.log(error.response.data);
  else console.log(error.message);
});

See request parameter description

ParameterTypeDescription
mediabinaryimage to analyze
callback_urlstringcallback URL to receive moderation updates (optional)
modelsstringcomma-separated list of models to apply
intervalfloatframe interval in seconds, out of 0.5, 1, 2, 3, 4, 5 (optional)
api_userstringyour API user id
api_secretstringyour API secret

Option 3: Live-stream

Here's how to proceed to analyze a live-stream:


curl -X GET -G 'https://api.sightengine.com/1.0/video/check.json' \
    --data-urlencode 'stream_url=https://domain.tld/path/video.m3u8' \
    -d 'models=violence' \
    -d 'callback_url=https://your.callback.url/path' \
    -d 'api_user={api_user}' \
    -d 'api_secret={api_secret}'


# if you haven't already, install the SDK with 'pip install sightengine'
from sightengine.client import SightengineClient
client = SightengineClient('{api_user}','{api_secret}')
output = client.check('violence').video('https://domain.tld/path/video.m3u8', 'https://your.callback.url/path')


// if you haven't already, install the SDK with 'composer require sightengine/client-php'
use \Sightengine\SightengineClient;
$client = new SightengineClient('{api_user}','{api_secret}');
$output = $client->check(['violence'])->video('https://domain.tld/path/video.m3u8', 'https://your.callback.url/path');


// if you haven't already, install the SDK with 'npm install sightengine --save'
var sightengine = require('sightengine')('{api_user}', '{api_secret}');
sightengine.check(['violence']).video('https://domain.tld/path/video.m3u8', 'https://your.callback.url/path').then(function(result) {
    // The API response (result)
}).catch(function(err) {
    // Handle error
});

See request parameter description

ParameterTypeDescription
stream_urlstringURL of the video stream
callback_urlstringcallback URL to receive moderation updates (optional)
modelsstringcomma-separated list of models to apply
intervalfloatframe interval in seconds, out of 0.5, 1, 2, 3, 4, 5 (optional)
api_userstringyour API user id
api_secretstringyour API secret

Moderation result

The Moderation result will be provided either directly in the request response (for sync calls, see below) or through the callback URL your provided (for async calls).

Here is the structure of the JSON response with moderation results for each analyzed frame under the data.frames array:

            
                  
{
  "status": "success",
    "request": {
    "id": "req_gmgHNy8oP6nvXYaJVLq9n",
    "timestamp": 1717159864.348989,
    "operations": 21
  },
  "data": {
  "frames": [
    {
      "info": {
        "id": "med_gmgHcUOwe41rWmqwPhVNU_1",
        "position": 0
      },
      "violence": {
        "prob": 0.95,
        "classes": {
            "physical_violence": 0.03,
            "firearm_threat": 0.01,
            "combat_sport": 0.95
        }
      },
    },
    ...
   ]
  },
  "media": {
    "id": "med_gmgHcUOwe41rWmqwPhVNU",
    "uri": "yourfile.mp4"
  },
}


            

You can use the classes under the violence object to detect violence in the video.

Any other needs?

See our full list of Image/Video models for details on other filters and checks you can run on your images and videos. You might also want to check our Text models to moderate text-based content: messages, reviews, comments, usernames...

Was this page helpful?