Products

SIGN UPLOG IN

Models / AI-Generated Image Detection

AI-Generated Image Detection

Table of contents

Overview

The AI-Generated Image Detection Model can help you determine if an image was entirely generated by an AI model, or if it is a real image. This model was trained on millions of artificially-created and human-created images spanning all sorts of content such as photography, art, drawings, memes and more.

The Model works by analyzing the visual (pixel) content of the image. No meta-data is used in the analysis. Tampering with meta-data such as EXIF data therefore has no effect on the scoring.

The Model was trained to detect images generated by the main models currently in use: Stable Diffusion, Stable Diffusion XL, MidJourney, Dall-E, Adobe Firefly, Flux, Recraft, GANs... Additional models will be added over time as they become available.

Use cases

  • Tag AI-generated imagery as such, to limit the spread of misinformation and fake news
  • Implement stricter moderation rules on AI-generated imagery
  • Detect potential fraud with fake ids, fake profiles or fake claims
  • Limit ai-generated spam
  • Enact bans on AI-generated imagery

Related model

The following 2 models can provide a useful complement to the AI-generated detection model:

Examples

AI-generated images

Image by DALL-E

Stable Diffusion

Image by MidJourney

MidJourney 6.1

Image by Firefly

Firefly 3

Image by DALL-E

DALL-E 3

Image by Ideogram

Ideogram v2

Image by Flux

Flux 1.1

Image by StyleGan

StyleGan2 (thispersondoesnotexist)

Use the model

If you haven't already, create an account to get your own API keys.

Detect if an image was AI-generated

Let's say you want to check the following image:

You can either send the image URL, or upload the raw binary image.

Option 1: Send image URL

Here's how to proceed if you choose to share the image URL:


curl -X GET -G 'https://api.sightengine.com/1.0/check.json' \
    -d 'models=genai' \
    -d 'api_user={api_user}&api_secret={api_secret}' \
    --data-urlencode 'url=https://sightengine.com/assets/img/examples/example-prop-c1.jpg'


# this example uses requests
import requests
import json

params = {
  'url': 'https://sightengine.com/assets/img/examples/example-prop-c1.jpg',
  'models': 'genai',
  'api_user': '{api_user}',
  'api_secret': '{api_secret}'
}
r = requests.get('https://api.sightengine.com/1.0/check.json', params=params)

output = json.loads(r.text)


$params = array(
  'url' =>  'https://sightengine.com/assets/img/examples/example-prop-c1.jpg',
  'models' => 'genai',
  'api_user' => '{api_user}',
  'api_secret' => '{api_secret}',
);

// this example uses cURL
$ch = curl_init('https://api.sightengine.com/1.0/check.json?'.http_build_query($params));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
curl_close($ch);

$output = json_decode($response, true);


// this example uses axios
const axios = require('axios');

axios.get('https://api.sightengine.com/1.0/check.json', {
  params: {
    'url': 'https://sightengine.com/assets/img/examples/example-prop-c1.jpg',
    'models': 'genai',
    'api_user': '{api_user}',
    'api_secret': '{api_secret}',
  }
})
.then(function (response) {
  // on success: handle response
  console.log(response.data);
})
.catch(function (error) {
  // handle error
  if (error.response) console.log(error.response.data);
  else console.log(error.message);
});

See request parameter description

ParameterTypeDescription
urlstringURL of the image to analyze
modelsstringcomma-separated list of models to apply
api_userstringyour API user id
api_secretstringyour API secret

Option 2: Send raw image

Here's how to proceed if you choose to upload the raw image:


curl -X POST 'https://api.sightengine.com/1.0/check.json' \
    -F 'media=@/path/to/image.jpg' \
    -F 'models=genai' \
    -F 'api_user={api_user}' \
    -F 'api_secret={api_secret}'


# this example uses requests
import requests
import json

params = {
  'models': 'genai',
  'api_user': '{api_user}',
  'api_secret': '{api_secret}'
}
files = {'media': open('/path/to/image.jpg', 'rb')}
r = requests.post('https://api.sightengine.com/1.0/check.json', files=files, data=params)

output = json.loads(r.text)


$params = array(
  'media' => new CurlFile('/path/to/image.jpg'),
  'models' => 'genai',
  'api_user' => '{api_user}',
  'api_secret' => '{api_secret}',
);

// this example uses cURL
$ch = curl_init('https://api.sightengine.com/1.0/check.json');
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $params);
$response = curl_exec($ch);
curl_close($ch);

$output = json_decode($response, true);


// this example uses axios and form-data
const axios = require('axios');
const FormData = require('form-data');
const fs = require('fs');

data = new FormData();
data.append('media', fs.createReadStream('/path/to/image.jpg'));
data.append('models', 'genai');
data.append('api_user', '{api_user}');
data.append('api_secret', '{api_secret}');

axios({
  method: 'post',
  url:'https://api.sightengine.com/1.0/check.json',
  data: data,
  headers: data.getHeaders()
})
.then(function (response) {
  // on success: handle response
  console.log(response.data);
})
.catch(function (error) {
  // handle error
  if (error.response) console.log(error.response.data);
  else console.log(error.message);
});

See request parameter description

ParameterTypeDescription
mediabinaryimage to analyze
modelsstringcomma-separated list of models to apply
api_userstringyour API user id
api_secretstringyour API secret

Response

The API will then return a JSON response with the ai_generated score. This score is a float between 0 and 1. The higher the value, the higher the confidence that the image is AI-generated:

                
                
{
    "status": "success",
    "request": {
        "id": "req_0zrbHDeitGYY7wEGncAne",
        "timestamp": 1491402308.4762,
        "operations": 1
    },
    "type": {
      "ai_generated": 0.01
    },
    "media": {
        "id": "med_0zrbk8nlp4vwI5WxIqQ4u",
        "uri": "https://sightengine.com/assets/img/examples/example-prop-c2.jpg"
    }
}
                
            

Any other needs?

See our full list of Image/Video models for details on other filters and checks you can run on your images and videos. You might also want to check our Text models to moderate text-based content: messages, reviews, comments, usernames...

Was this page helpful?